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Abstract
This paper reports results on the crystallographic study of heterophase structures
in relaxor–ferroelectric (1 − x)Pb(Zn1/3Nb2/3)O3–xPbTiO3 single crystals
with 0.06 < x < 0.11. Possible variants of the elastic matching of three
ferroelectric polydomain or twinned phases are considered with due regard
for the relief of internal stresses at various volume fractions of these phases
near the morphotropic phase boundary. It is found that two-phase regions,
‘rhombohedral–monoclinic’ and ‘monoclinic–tetragonal’, can be elastically
matched along so-called zero-net-strain planes, parallel to the (100) or (010)
domain (twin) walls in the intermediate monoclinic phase, where the Miller
indices (hkl) are written in terms of the perovskite axes of the cubic unit cell.
Calculated volume fractions of the three phases coexisting at 0.06 < x < 0.11
agree well with recent experimental results obtained by Bertram et al (2003
J. Cryst. Growth 253 212).

1. Introduction

The relaxor-based (1 − x)Pb(Zn1/3Nb2/3)O3–xPbTiO3 (PZN–PT) solid solutions with the
perovskite-type structure have been intensively studied in the last few years due to the very high
piezoelectric activity [1–5], the various domain (or twinned) and heterophase structures [6–
11] and the presence of intermediate monoclinic or orthorhombic phases [2, 12–17]. These
and related phenomena are observed in PZN–PT single crystals near the morphotropic phase
boundary, i.e., in the range of molar concentrations x ≈ 0.08–0.10. Our previous attempts
to investigate the heterophase structures in these single crystals were restricted to cases of
the coexistence of two ferroelectric phases, such as rhombohedral (Rh) R3m–tetragonal
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Figure 1. A cross-section of a three-phase single crystal through the (X1OX2) plane. ni: normal
vector of the interface CF between the two-phase ABCF and CDEF regions.

(T) P4mm [4, 7, 10], Rh–monoclinic (MC in the notation of [2]) [10], MC–T [19] and
orthorhombic–T [11]. In our works [4, 7, 10, 11], different variants of non-180◦ domain
structures in the above-mentioned ferroelectric phases were examined as regards whether they
satisfy the conditions for zero-net-strain planes (ZNSPs) [18, 19] at the elastic matching of the
two phases.

In the meantime, recent experimental results [17] have shown that the MC phase with
Pm symmetry coexists with both the Rh and T phases over a wide range of x values at room
temperature and the dependence of the volume fraction of the MC phase on x is non-monotonic,
in contrast to the dependences found for the Rh and T phases. Earlier we analysed features
of the three-phase states ‘T P4mm–Rh R3m–cubic Pm3m’ in ferroelectric Pb(Zr1−x Tix)O3

single crystals by using the crystallographic [20] and thermodynamic [21] methods. After
these studies, as the intermediate monoclinic (MA in the notation of the review [2]) Cm phase
was experimentally revealed and investigated in Pb(Zr1−x Tix)O3 [22], the role of the MA phase
in the elastic matching and the stress relief was also analysed [23]. In the work [23], different
variants of the ZNSPs and corresponding optimal domain volume fractions were determined
only for the two-phase states (i.e., T–Rh, Rh–MA and T–MA) close to the morphotropic phase
boundary of the Pb(Zr1−x Tix)O3 solid solutions. In this connection, the present paper is aimed
at the development of model concepts for the three-phase states in ferroelectric materials and
the determination of optimal volume fractions of the phases coexisting in the PZN–PT single
crystals near the morphotropic phase boundary.

2. Elastic matching of heterophase regions

In order to analyse the three-phase states and related elastic effects in the PZN–PT system,
we propose the following model. The stress-free single crystal is represented as a set of two
types of heterophase region, ABCF and CDEF (figure 1). Each region consists of a matrix (the
intermediate MC phase) and a plate-like inclusion (the Rh or T phase that is situated to the left
or right of the morphotropic phase boundary [17], respectively). The volume fraction of the
Rh inclusion (A1B1C1F1) in the ABCF region is vR whereas the T inclusion (C2D2E2F2) in the
CDEF region is characterized by the volume fraction vT. We assume that the above-mentioned
regions are uniformly distributed in the crystal sample and their volume fractions equal m
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(CDEF) and 1 − m (ABCF). The phases coexisting in the crystal sample are described by the
volume fractions mR (Rh phase), mM (MC phase) and mT (T phase) as follows:

mR = (1 − m)vR mM = (1 − m)(1 − vR) + m(1 − vT) mT = mvT. (1)

For the description of domain types in each phase, a rectangular coordinate system (X1,
X2, X3) is introduced (figure 1); the axes of this system are assumed to be parallel to the
perovskite unit-cell vectors in the paraelectric cubic (Pm3m) phase of PZN–PT. Orientations
of individual ferroelectric domains as components of mechanical twins in the Rh, MC and T
phases are given by unit-cell vectors (a, b, c) in the (X1, X2, X3) system. These domains are
separated by stress-free planar walls (or domain boundaries) whose orientations are determined
according to results of works by Fousek and Janovec [24].

In the Rh phase, four types of 71◦ (109◦) domain are characterized by the unit-cell vectors
(aRd, bRd, cRd) and volume fractions hRd , where d = 1, 2, 3 and 4. The above-mentioned
vectors are arranged by taking into account the unit-cell shear angles [16, 17] approximately
along the following directions [8, 25] in the perovskite unit cell: ([100]; [010]; [001]) (d = 1),
([1̄00]; [010]; [001̄]) (d = 2), ([01̄0]; [1̄00]; [001̄]) (d = 3) and ([010]; [1̄00]; [001]) (d = 4).
The volume concentrations of these domain types are described by two parameters [10, 19],
0 � uR � 1 and 0 � gR � 1, as follows: hR1 = (1 − uR)(1 − gR), hR2 = (1 − uR)gR,
hR3 = uR(1 − gR) and hR4 = uRgR. In the T phase, there are two types of 90◦ domain with
the unit-cell vectors (aTj , bTj , cTj) lying along the directions ([100]; [010]; [001]) ( j = 1,
volume concentration 0 � hT � 1) and ([010]; [001]; [100]) ( j = 2, volume concentration
1−hT). The MC phase is characterized by four domain types [10, 12] with the unit-cell vectors
(aMs, bMs, cMs) lying along the directions ([010]; [010]; [001]) (s = 1), ([1̄00]; [01̄0]; [001])
(s = 2), ([010]; [1̄00]; [001]) (s = 3) and ([01̄0]; [100]; [001]) (s = 4). Analogously to the
case of the polydomain Rh phase, the volume fractions hMs of the domains in the MC phase
are expressed in terms of two parameters, 0 � fM � 1 and 0 � pM � 1, by the formulae
hM1 = fM pM, hM2 = (1 − fM)pM, hM3 = fM(1 − pM) and hM4 = (1 − fM)(1 − pM).

In order to analyse the elastic matching of the phases and the heterophase regions (figure 1),
we write the distortion matrices of the polydomain Rh, T and MC phases in terms from the
works [10, 19, 20, 23] as

‖NR‖ =
(

µa µ(2gR − 1) µ(2uR − 1)(2gR − 1)

µ(2gR − 1) µa µ(2uR − 1)

µ(2uR − 1)(2gR − 1) µ(2uR − 1) µa

)
(2)

‖NT‖ = hT

(
εa 0 0
0 εa 0
0 0 εc

)
+ (1 − hT)

( cos ϕT 0 − sin ϕT

0 1 0
sin ϕT 0 cos ϕT

)(
εc 0 0
0 εa 0
0 0 εa

)
(3)

and

‖NM‖ = pM

(
ηa 0 η(2 fM − 1)

0 ηb 0
0 0 ηc

)

+ (1 − pM)

( cos ϕM − sin ϕM 0
sin ϕM cos ϕM 0

0 0 1

)(
ηb 0 0
0 ηa η(2 fM − 1)

0 0 ηc

)
(4)

respectively. The unit-cell distortions µa , µ from equation (2), εa , εc from equation (3), as well
as ηa , ηb, ηc and η from equation (4), are expressed [10, 19] in terms of the unit-cell parameters,
aR and ωR of the Rh phase, aT and cT of the T phase, aM, bM, cM and ωM of the MC phase
and aC of the cubic phase, as follows: µa = aR cos ωR/aC , µ = aR sin ωR/aC , εa = aT/aC ,
εc = cT/aC , ηa = aM cos ωM/aC , ηb = bM/aC , ηc = cM/aC , and η = aM sin ωM/aC . The
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angles ϕT = arccos[2εaεc/(ε
2
a +ε2

c)] and ϕM = arccos[2ηaηb/(η
2
a +η2

b)] in formulae (3) and (4)
are introduced for taking into account a rotation of the crystallographic axes [18, 19, 23] of the
adjacent domains ( j = 1, 2) in the T phase or domain pairs (s = 1, 2 and 3, 4) in the MC phase
because εa �= εc and ηa �= ηb, respectively. It is assumed that the Rh and MC phases coexisting
in the ABCF region as well as the adjacent T and MC phases in the CDEF region (figure 1)
are separated by interfaces which are ZNSPs in accordance with conditions formulated in the
works [10, 18, 19]. In this case, we can consider the crystal sample as a set of regions like
two adjacent polydomain phases that contain permissible [24] domain walls (i.e., the internal
interfaces being ZNSPs). Hereafter we write the distortion matrices of the ABCF and CDEF
regions as

‖K (1)‖ = vR‖K (2)‖ · ‖NR‖ + (1 − vR)‖NM‖ (5)

and

‖K (2)‖ = vT‖K (1)‖ · ‖NT‖ + (1 − vT)‖NM‖ (6)

respectively. The involvement of the ‖K (t)‖ matrices in the right-hand sides of equations (5)
and (6) is connected with the electromechanical interaction [11] between the ferroelectric
phases in each heterophase region. The similar items containing ‖NM‖ in equations (5) and (6)
are related to the intermediate MC phase that plays the role of the matrix and/or the adjacent
phase in both the ABCF and CDEF regions (figure 1).

Our analysis of the elastic matching of the regions of the ABCF and CDEF types in the
whole crystal sample is based on the crystallographic algorithm [18] and using the matrix
elements

Dbr =
3∑

w=1

(K (2)

bw K (2)
rw − K (1)

bw K (2)
rw ) (7)

expressed through the matrix elements K (t)
bw (t = 1, 2) from equations (5) and (6). These

regions are separated by the interfaces which are ZNSPs under conditions

det ‖Dbr‖ = 0 and D′2
br = D2

br − Dbb Drr � 0 (b �= r). (8)

Orientations of these interfaces are given by normal vectors n1(h1k1l1) ⊥ n2(h2k2l2) in terms
of the perovskite axes of the cubic unit cell, where the Miller indices are expressed [18] by the
ratios

h1,2 = D11/D1,2 k1,2 = (D12 ± D′
12)/D1,2 l1,2 = (D13 ± D′

13)/D1,2. (9)

In equations (9), the matrix elements (7) and (8) or their combinations, such as D1,2 =
[D2

11 +(D12±D′
12)

2 +(D13±D′
13)

2]1/2, are introduced. If the matrix elements from equation (7)
do not obey at least one of conditions (8), the interfaces between the ABCF and CDEF regions
become strained and may be approximated as second-degree surfaces in accordance with the
results of [19, 26].

3. Results of calculations and discussion

In this section we present some results on the three-phase states and the elastic matching of the
heterophase regions. Among the experimental data [17] on the PZN–PT single crystals at room
temperature, we have chosen the unit-cell parameters at the following molar concentrations:
xR = 0.06 (the Rh phase, the left side of the concentration range), xM = 0.08 (the MC phase,
the middle part of the concentration range where no changes in the unit-cell parameters are
observed) and xT = 0.11 (the T phase, the right side of the concentration range).
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To the best of our knowledge, experimental works on PZN–PT and related solid solutions
do not contain data on densities of the morphotropic phases or on interconnections between
the molar concentration x of the heterophase single crystal and the volume fraction m of the
two-phase CDEF-type region shown in figure 1. Faced with this fact, we assume that the
effective molar concentration of the three-phase PZN–PT single crystals can be evaluated in a
general form as

xeff = mRxR + mMxM + mTxT (10)

where the volume fractions mR, mM and mT are determined according to formulae (1). As for
the link m ↔ x , we simply assume that a linear approximation for m = m(x) is possible in
the range [xR; xT] and that the following boundary conditions for the volume fraction m hold
valid for dm/dx = constant > 0 : m(xR) = 0 and m(xT) = 1.

Our further calculations were aimed at the determination of the ZNSPs (see formulae (7)–
(9)) at the interfaces such as CF (figure 1). Surprisingly, many variants of such ZNSPs appear
with variations of the parameters uR, gR, hT, fM and pM (see section 2) which describe the
volume fractions of the different domain types in the coexisting phases. It is important to note
that any changes in the uR, gR and fM values cannot strongly change the elastic matching
conditions for the formation of the ZNSPs in the heterophase PZN–PT single crystals. Such
an effect is explained by a negligible influence of the shear unit-cell distortions of the domains
in the Rh and MC phases. Otherwise, this influence is expressed in terms of fairly small
off-diagonal matrix elements (see equations (2) and (4)) depending on uR, gR or fM. Among
various orientations ni (hi kili) of the interfaces which are ZNSPs (see formulae (9)), we regard
as most probable the interfaces parallel to the (100) or (010) plane of the perovskite unit cell.
These interfaces are simultaneously parallel to the permissible domain (twin) walls [24] in the
MC phase (see, for example, the CF line in figure 1) and, therefore, provide complete stress
relief at the elastic matching of the two-phase regions of the ABCF and CDEF types.

The most interesting examples of the three-phase states in the PZN–PT single crystals are
illustrated by concentration dependences mR(xeff), mM(xeff) and mT(xeff) (see formulae (1)
and (10)) which were calculated (figure 2) for the ZNSP orientations close to the (100) or
(010) planes of the perovskite unit cell. A transition from the heavily twinned Rh phase
(uR = gR = 1/2; figure 2(a)) to the single-domain one (uR = gR = 1; figure 2(b)) results in
increasing of the volume fractions mM and mT to some degree at xeff < 0.07: this effect is
explained by the active role of the mechanical twins of the MC and T phases in the stress relief
near the morphotropic phase boundary. The above-mentioned changes in the 71◦ (109◦) domain
structure of the Rh phase practically do not affect the location of max mM(xeff) (compare
curves 2 in figures 2(a) and (b)) and this fact attests to the passive role of the Rh phase in the
stress relief at the phase coexistence.

The calculated curves shown in figure 2 are in good agreement with the experimental
concentration dependences [17] found for the phases coexisting in the PZN–PT single crystals
at 0.06 < x < 0.11. In this connection, it should be noted that the unit-cell parameters and
the volume fractions of the Rh, MC and T phases were measured by Bertram et al [17] for the
same heterophase PZN–PT single crystals. This circumstance makes it possible to directly
compare our calculation results (figure 2) and the experimental data [17]. The features of the
three-phase states are successfully explained on the basis of the proposed model (figure 1)
and the procedure for the determination of the ZNSPs at the elastic matching of the two-
phase regions (equations (5)–(9)). Such or like combinations of the morphotropic phases were
not considered in earlier papers on ferroelectrics and related materials and they enable us to
characterize the PZN–PT solid solutions as a unique system in which the three-phase states
‘· · ·–(Rh + MC)–(MC + T)–· · ·’ would provide complete stress relief over a wide x range.
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Figure 2. Calculated concentration dependences of the volume fractions vi (xeff) (in %) of the
morphotropic phases in the PZN–PT single crystals containing the polydomain (a) or single-domain
(b) Rh phase. Calculations were made for cases uR = gR = 1/2 (a) and uR = gR = 1 (b). In both
cases, curves 1, 2 and 3 are related to vR(xeff ), vM(xeff ) and vT(xeff), respectively.

(This figure is in colour only in the electronic version)

4. Conclusions

Using the experimental data on the unit-cell parameters [17] and developing the concepts
of ZNSPs in heterophase ferroelectrics [10, 11, 18–20], the three-phase states have been
studied in the relaxor–ferroelectric PZN–PT single crystals near the morphotropic phase
boundary. Progress has been achieved in modelling and crystallographically describing the
heterophase systems with the ZNSPs on different levels, i.e., between the adjacent domains,
the domain or twinned regions, the adjacent phases and the two-phase regions. Despite the
lack of experimental data on features of heterophase/domain structures of the single crystals at
various molar concentrations x , the volume fractions (1) of the morphotropic phases have been
evaluated over a wide range of the x values and good correlation between the calculated and
experimental results has been established. It is believed that the proposed model of the three-
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phase states and the features of the elastic matching studied shed light on the morphotropic
phase transitions in heavily twinned ferroelectric single crystals.
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